- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Johnson, James_W (1)
-
Weinberg, David_H (1)
-
Weller, Miqaela_K (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We examine the galactic chemical evolution (GCE) of $^4$He in one-zone and multizone models, with particular attention to theoretical predictions of and empirical constraints on initial mass fraction (IMF)-averaged yields. Published models of massive star winds and core collapse supernovae span a factor of 2–3 in the IMF-averaged $^4$He yield, $$y\mathrm{_{He}^{CC}}$$. Published models of intermediate mass, asymptotic giant branch (AGB) stars show better agreement on the IMF-averaged yield, $$y\mathrm{_{He}^{AGB}}$$, and they predict that more than half of this yield comes from stars with $$M=4{\!-\!}8\, \mathrm{ M}_\odot$$, making AGB $^4$He enrichment rapid compared to Fe enrichment from Type Ia supernovae. Although our GCE models include many potentially complicating effects, the short enrichment time delay and mild metallicity dependence of the predicted yields makes the results quite simple: across a wide range of metallicity and age, the non-primordial $^4$He mass fraction $$\Delta Y = Y-Y_{\mathrm{P}}$$ is proportional to the abundance of promptly produced $$\alpha$$-elements such as oxygen, with $$\Delta Y/Z_{\mathrm{O}}\approx (y\mathrm{_{He}^{CC}}+y\mathrm{_{He}^{AGB}})/y\mathrm{_{O}^{CC}}$$. Reproducing solar abundances with our fiducial choice of the oxygen yield $$y\mathrm{_{O}^{CC}}=0.0071$$ implies $$y\mathrm{_{He}^{CC}}+y\mathrm{_{He}^{AGB}}\approx 0.022$$, i.e. $$0.022\,\mathrm{ M}_\odot$$ of net $^4$He production per solar mass of star formation. Our GCE models with this yield normalization are consistent with most available observations, though the implied $$y\mathrm{_{He}^{CC}}$$ is low compared to most of the published massive star yield models. More precise measurements of $$\Delta Y$$ in stars and gas across a wide range of metallicity and [$$\alpha$$/Fe] ratio could test our models more stringently, either confirming the simple picture suggested by our calculations or revealing surprises in the evolution of the second most abundant element.more » « less
An official website of the United States government
